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Abstract An Argo-based estimate of oxygen (O2) at 150 m is presented for the Southern Ocean (SO)
from temperature (T), salinity (S), and O2 Argo profiles collected during 2008–2012. The method is based on
a supervised machine learning algorithm known as random forest (RF) regression and provides an estimate
for O2 given T, S, location, and time information. The method is validated by attempting to reproduce the
Southern Ocean State Estimate (SOSE) O2 field using synthetic data sampled from SOSE. The RF mapping
shows skill in the majority of the domain but is problematic in some of the boundary regions. Maps of O2 at
150 m derived from observed profiles suggest that SOSE and the World Ocean Atlas 2013 climatology may
overestimate annual mean O2 in the SO, both on a global and basin scale. A large regional bias is found
east of Argentina, where high O2 values in the Argo-based estimate are confined closer to the coast com-
pared to other products. SOSE may also underestimate the annual cycle of O2. Evaluation of the RF-based
method demonstrates its potential to improve understanding of O2 annual mean fields and variability from
sparse O2 measurements. This implies the algorithm will also be effective for mapping other biogeochemi-
cal variables (e.g., nutrients and carbon). Furthermore, our RF evaluation results can be used to inform the
design of future enhancements to the current array of O2 profiling floats.

1. Introduction

The oxygen (O2) distribution in the world oceans regulates survival of benthic organisms and the nitrogen
cycle (Altabet, 2007; Diaz & Rosenberg, 2008) and informs on carbonate system parameters (Bushinsky &
Emerson, 2015; Carter et al., 2016; Williams et al., 2016, 2017). The few (sparse) accurate long-term measure-
ments of O2 that exist in the ocean interior indicate that O2 concentrations have declined over the past 50
years (Emerson & Bushinsky, 2014). Yet it remains a challenge to verify the inferred sensitivity of the carbon
and oxygen cycle to changes in ecosystem dynamics, nutrient availability, and ocean circulation that are
predicted by global climate models (Emerson & Bushinsky, 2014). An important step in this direction was
mounting O2 sensors on Argo profiling floats (i.e., �200 Argo floats with calibrated O2 data were deployed
globally during 2002–2015; Drucker & Riser, 2016). The Argo array, currently including �3,800 floats, has
been measuring ocean temperature and salinity (T and S) on a global scale for over a decade, with unprece-
dented resolution and no seasonal bias (supporting information Figures S1g–S1i), and provided a great
opportunity to sample O2. Former accuracy of 63% for O2 Argo observations (Takeshita et al., 2013) has
been improved by Drucker and Riser (2016), who recalibrate the phase correction determined in the lab for
each specific sensor (Optode) after a multi-Optode foil calibration, using the best available in situ reference
data. The improved O2 data set by Drucker and Riser (2016) is still sparse. Yet O2 profiles have great poten-
tial to further our understanding of the O2 large-scale distribution, especially in the Southern Ocean (SO),
where most of the observations previous to Argo (included in recent mapping efforts, e.g., Figure 1a) have
been collected during summer (supporting information Figures S1b and S1c).

The concentration of O2 in the ocean is controlled by ocean-atmosphere interactions, biological activity,
ocean circulation, and T/S (e.g., warmer water holds less O2). Modern machine learning algorithms with
high computational speeds and less assumptions about the data (e.g., assumptions about the structure of
spatiotemporal covariance and forms of relationships between variables) compared to traditional statistical
techniques have a great potential for modeling highly nonlinear relationships between the variables and
for efficient estimation of O2 from sparse observations. Nevertheless, there have been few studies imple-
menting machine learning algorithms for such tasks, including neural networks (Chapman & Charantonis,
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2017; Sauzède et al., 2015, 2016, 2017), and decision trees (Kamikawaji et al., 2016), and none of them target
the estimation of O2. Here we investigate the utility of a machine learning algorithm (random forest regres-
sion; Breiman, 2001) to map O2 using Argo observations of O2 (Figure 2a, supporting information Figures
S1d–S1f) and T/S (supporting information Figures S1g–S1i). Random forest has a number of competitive
advantages over other machine learning techniques, including high performance and low number of tuning
parameters. Our proof of concept focuses on O2 (at one depth level, section 3) during the 5-year period
between 2008 and 2012, when the Biogeochemical Southern Ocean State Estimate (B-SOSE, further referred
to as SOSE) is available. SOSE (Verdy & Mazloff, 2017) provides a high-resolution dynamically consistent esti-
mate of the 3-D ocean (including biogeochemistry) that is informed by (i.e., assimilates) observations and
can be used to test our method. This analysis provides a framework to improve our understanding of the
3-D O2 distribution in the SO and of the regional 12-month anomaly from the annual mean, highlighting
possible biases of other available products (e.g., based on mapping sparse O2 measurements or combining
observations and models in ocean state estimates). The framework described here can also inform float
deployment strategies to maximize the information we can learn about the large-scale O2 distribution from

Figure 1. (a–c) Annual mean O2, lmol kg21. (a) WOA13 (i.e., data since the early 1900s), (b) SOSE (2008–2012), and (c) RFArgoTS O2 (2008–2012). The black box in
Figure 1b indicates a region East of Argentina (608W–308W, 50.58S–40.58S). Dark gray dots in Figure 1c indicate locations where D%RFg

� 1:5%, i.e., where the
method bias is expected to be 1.5% the actual value or larger; white dots (at times overlaying dark gray dots) indicate where jD�RFg

j is larger than O2 variability (i.e.,
than the O2 standard deviation in SOSE, in Figure 1d). (d) O2 standard deviation in SOSE, lmol kg21.
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future O2 profiles, e.g., from the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)
project floats (Johnson et al., 2017).

The rest of the paper is organized as follows. Sections 2.1, 2.2, and 3 describe observations, model, and
method. Results are in section 4, with a summary of the method’s performance and diagnostics in section
4.1, our estimate of the SO O2 at 150 m from Argo (5-year mean and 12-month anomaly) in section 4.2, and
assessment of different sampling scenarios in section 4.3. Section 5 includes a summary and conclusions.

2. Data and Products

2.1. Observations
The Argo array has provided T/S observations in the upper 2,000 dbar of the global ocean for over a decade.
Other sensors have also been tested on a number of floats for collecting information related to the biogeo-
chemistry of the oceans (e.g., O2, nitrate, and chlorophyll a) as part of the BGC-Argo program. Here we use

Figure 2. (a) O2 data locations during 2008–2012 (black dots). Other dots are fictitious data locations in (blue) scenario 1 and (red and blue) scenario 2. Light blue
shade indicates the area of the Southern Ocean considered in this analysis. (b–d) Maps of time mean O2 differences (D� , lmol kg21) between products, after
removing the area-weighted spatial average from each. (b) RFg SOSETS O2 minus SOSE O2 (i.e., D�RFg

), (c) SOSE O2 minus RFArgoTS O2, and (d) WOA13 O2 minus
RFArgoTS O2. The time mean is over the period 2008–2012, except for WOA13, which includes observations since the early 1900s. Black contours in Figure 2b indi-
cate D%RFg

equal (solid line) 1.5% and (dots) 3%. In Figures 2c and 2d, regions where D%RFg
� 1:5% are not shown and black dots indicate where D� � D�RFg

, as
described in section 3.2.
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O2 observations from Argo profiling floats for the period 2008–2012 (Figure 2a, black dots; supporting infor-
mation Figure S1d), after bias correction described in Drucker and Riser (2016). We also use Argo T/S for the
same period (including those floats that do not measure O2; supporting information Figure S1g).

We compare our Argo T/S-based estimate of O2 in the SO with the World Ocean Atlas 2013 O2 climatology
(WOA13, Garcia et al., 2014). WOA13 is an objectively analyzed product at standard depth levels, which
includes available O2 observations (e.g., profiling floats and ship-based measurements) since the early
1900s.

2.2. The Biogeochemical Southern Ocean State Estimate
The Southern Ocean State Estimate is produced by performing a least squares fit optimization of a modern
general circulation model (the MITgcm) to all available ocean observations (Mazloff et al., 2010). This is
accomplished iteratively through the adjoint method and results in a high-resolution dynamically consistent
estimate of the 3-D ocean T/S, pressure, and velocity fields. More recently, biogeochemistry has been
included in SOSE (Verdy & Mazloff, 2017) and SOSE O2 fields are used here (along with T/S) for comparison
with our Argo T/S-based estimate of O2 and to test our method. SOSE monthly and 3-day fields are consid-
ered, along with O2, T/S sampled (in SOSE) at the time and locations of Argo floats for the period 2008–
2012 (SOSE profiles).

3. Method

All the results and discussion in this analysis are for O2 at 150 m. The 150 m depth level is chosen since it is
characterized by significant annual variability in O2, has reasonable sample size, and biological processes
including phytoplankton blooms are less influential there (than closer to the surface), making T/S better pre-
dictors of O2.

The method presented here is based on random forest (RF; Breiman, 2001) regression and is applied sepa-
rately to two data sets: Argo observed profiles and SOSE estimated profiles (i.e., SOSE O2 at the time and
location of Argo O2 observations considered in this analysis). Our Argo-based O2 estimate is compared with
WOA13 and SOSE products to inform biases they may have, while the analogous estimate from SOSE pro-
files can be compared to SOSE (actual) fields to verify how the method performs. Using the model fields, we
also simulate scenarios where different numbers of O2 profiles are available, and estimate how the RF-
based results may improve if more floats are deployed.

Compared with other machine learning methods (such as gradient boosting, neural, and deep neural net-
works), RF is known for a great balance of predictive performance, number of tuning parameters, and com-
putational speed. In particular, predictive accuracy of RF is often comparable to deep machine learning and
better than other techniques; RF has fewer tuning parameters than many other methods, especially those
for deep learning; RF’s speed is often in between deep learning approaches (slower) and other machine
learning methods (faster), such as stand-alone regression trees (e.g., see Ahmad et al., 2017; Futoma et al.,
2015; Kutkina & Feuerriegel, 2016). R package randomForest (Liaw & Wiener, 2002) was used to apply the RF
method in this study.

3.1. Random Forest Regression
The basic element of a random forest regression is a regression tree (Breiman et al., 1984) similar to the one
in Figure 3. Following from top to bottom, the data set is split by the values of predictors (e.g., T, S, latitude,
longitude, year, and month) that yield subsets most homogeneous based on the response variable (O2).
The bottom (terminal) nodes, which are not getting split anymore, provide O2 predictions for a given com-
bination of predictors. Notice that some predictors are not represented in the tree (Figure 3) if they cannot
split the data better than other predictors.

Let HðZÞ be a regression tree grown on training data Z, where Z can be represented as a N3ðp11Þ matrix
with N observations of p predictor variables and a response variable. Tree HðZÞ is constructed by a recursive
search over all possible values of predictors to find best splits that yield the most homogeneous subsets of
the response variable. Subsequent splits can be made using the same or a different predictor. Thus, nonlin-
ear relationships between response and predictors and (if subsequent splits are based on different predic-
tors) interaction effects between variables can be accommodated in a tree (Berk, 2016). Forecast or fitted
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value for some combination of predictors x, Hðx; ZÞ, is an average value of the response variable in the cor-
responding terminal node of the tree. As with any other regression technique, better results are achieved
when no extrapolation is done, i.e., when x values are within the range of the predictors in Z.

Bootstrap aggregation (bagging) works well to reduce variance of tree-based predictions. In bagging, pre-
dictions from a large number (B) of trees are aggregated, where each tree is grown on a sample with
replacement (bootstrap sample) Z� of size N from the original data Z. The reduction of variance is higher
the smaller is the correlation between the pairs of trees. The technique of random forest (RF, Breiman, 2001)
aims to further reduce correlation between trees by using only m � p predictors randomly selected at each
tree split. We use the recommended m of bp=3c, and the minimum node size of five (Hastie et al., 2009). RF
predictions can be written as

RF f̂ ðxÞ5B21
XB

b51

Hbðx;Z�bÞ; (1)

where Hbðx;Z�bÞ are predictions from the bth random forest tree grown on the bth bootstrap sample Z�b.

Since each Z�b is a sample with replacement, about N=3 of the original data are left out each time and not
used to construct a tree (so-called out-of-bag, OOB, data). In the Breiman’s RF approach, OOB error can be
calculated by (i) using the OOB xOOB to forecast the response variable using the tree, then (ii) comparing the
obtained predictions with the actual response (let RFMSE be the obtained OOB mean squared error). At the
next step, ith predictor’s values in xOOB are randomly permuted and error RFMSE(i) is estimated (i51; . . . ; p).
The more important the predictor, the bigger the difference between the two errors. The average difference
for ith predictor over B trees is

Ii5B21
XB

b51

ðRFMSEðiÞb2RFMSEbÞ; (2)

where RFMSEðiÞ is OOB MSE with the values of ith predictor in OOB data permuted. In this permutation-
based approach, the largest Ii correspond to the most important predictors.

With a few extra steps (see section 5.7 by Berk, 2016), we assess relationships between each predictor and
response in RF. Suppose that ith predictor has m unique values ui;1; . . . ; ui;m in Z. The partial dependence
for ith predictor is then represented by m average predictions from the original RF when x in (1) is replaced
with a data set Z modified in such way that all values of the ith predictor are equal to one of its m unique

Figure 3. A regression tree obtained from the observed Argo data. Each node shows average O2 (lmol kg21) and node
size as percentage of the total sample size N 5 8,704.
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values (the rest of the predictors remain unmodified). In other words, for each j51; . . . ;m, we (i) replace all
(i.e., N) values of ith predictor in Z with ui;j ; (ii) use the modified Z to obtain N predictions from the RF, then
(iii) calculate an average of the N predictions.

3.2. Applying RF to Profile Data and Evaluating Results
In this section, we describe how the RF method is applied to profile data to produce and evaluate O2 esti-
mates presented in section 4.

The RFs are trained separately on Argo and SOSE profiles during 2008–2012 (i.e., when data both from Argo
and SOSE are available) using O2 as the response variable and T/S, latitude, longitude, month, and year as
predictors. An alternate version of the RFs is also considered which includes two additional predictors: sur-
face chlorophyll (November–February climatology, when cloud coverage is less likely to cause gaps in the
record) and time-varying sea surface height, both derived from satellite data. If not specified otherwise, RF
estimates discussed in the manuscript are based on six predictors. Although biology is not explicitly
accounted for as one of the predictors in the main set of RFs, differences in biological processes in time and
space are partially accommodated using the spatiotemporal variables already included in the RF. As we run
the RF, we assess whether the mean squared error stabilizes with the number of trees in RF increasing up to
B. If not, B should be increased.

We then obtain RF predictions of O2 on Argo T/S profiles collected in 2008–2012 and grid these esti-
mates onto a 18 3 18 (latitude/longitude) grid using a weighted least squares fit (LSF) method. Similarly
to Roemmich and Gilson (2009), the LSF algorithm fits to the K data points nearest to a grid point a
three-dimensional surface defined by linear and quadratic terms in latitude and longitude, along with
a time mean, the annual cycle and its 2, 3, 4, and 6 months harmonics. Different from Roemmich and
Gilson (2009), weights here are based on the actual distance between the data and the grid point;
also, only data within an ellipse centered on the grid point are considered (with axes of the ellipse
measuring 4,000 and 2,000 km in the zonal and meridional direction, respectively); finally, data are
excluded if land is present between the data and the grid point. If available within the ellipse, the 100
data points (nearest to the grid point) per each of the 12 months are included in the fit, i.e.,
Kmax510031251; 200.

We refer to the resulting Argo-based gridded O2 fields as RFArgoTS O2, while RFSOSETS O2 is an analo-
gous product but using SOSE O2, T/S profiles. RFArgoTS O2 has the potential to inform biases in other
available products (e.g., WOA13 and SOSE) in regions where the RF method is determined to perform
well.

To determine these skillful regions, we apply the RF approach to SOSE profiles and estimate O2 directly on
the SOSE T/S grid. We refer to this estimate as RFg SOSETS O2, with g indicating the O2 prediction is based on
the T/S SOSE (output) grid. RFg SOSETS O2 is used to assess the RF method performance rather than RFSOSETS

O2 since we are first interested in how the RF method performs, not the gridding algorithm. For the 5-year
mean fields, the difference D�RFg

between RFg SOSETS O2 and SOSE (after removing the area-weighted spatial
average from each product, Figure 5c) is taken as measure of local RF performance. We trust the RF
approach in regions where D%RFg

< c1:5, with D%RFg
5
jD�RFg j
OSOSE

2
3100; OSOSE

2 the actual SOSE field, and
c1:551:5%. In the trusted regions, differences jD�j > jD�RFg

j between RFArgoTS O2 and other products (i.e.,
SOSE or WOA13; removing from each the area-weighted spatial average) inform biases in the product of
interest. Percentages of the domain area (shaded in Figure 2a) where described criteria apply for different
values of c are summarized in Table 2.

The 12-month anomaly (from the annual mean) is compared across products for regional averages, with dif-
ferences between RFSOSETS O2 and SOSE O2 informing on the bias of the RF-based estimate of the O2

annual cycle.

Finally, as an indication of how the LSF gridding method performs, SOSELSF O2 is also shown. SOSELSF O2

results from applying the LSF gridding to SOSE O2 at the Argo T/S locations. A summary of the different O2

estimates discussed in this analysis can be found in Table 1. The domain of interest for the comparison
across products is shaded in Figure 2a and includes regions where Argo T/S data are available (supporting
information Figure S1g).
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3.3. Simulating Different Sampling Scenarios
As described in section 3.2, we assess the method’s performance based on how the RFg SOSETS O2 estimate
compares to the actual SOSE O2 fields. We also investigate (in SOSE) the sensitivity of the RF regression to
using different numbers of O2 profiles. Scenarios are tested using profiles at available locations plus addi-
tional data, which result in these hypothetical O2 estimates: RFg1 SOSETS O2, from additional O2 data near
boundary regions (black and blue dots in Figure 2a); RFg2 SOSETS O2, as RFg1 SOSETS O2 but with additional O2

data also in the South Atlantic (black, blue, and red dots in Figure 2a); RFgTS SOSETS O2, from O2 data at Argo
T/S locations during 2008–2012 (see supporting information Figure S1g for the number of profiles in 18 3

18 latitude/longitude bins).

Additional experiments are performed for the month of October during 2008–2012, training the RF with
only October data. In this case, scenarios with 2 and 4 times the number (n 5 545) of actual Argo O2 Octo-
ber profiles are evaluated, along with two different distributions:

1. The number of data is doubled (quadrupled) randomly within the domain (with additional profiles dis-
tributed at least 300 km apart from each other and from real profiles).

2. The number of data is doubled (quadrupled) within each zonal sector, with additional profiles �200 km
or more apart.

For each scenario, an ensemble of 10 members is considered, and sample distributions are shown in sup-
porting information Figure S7.

As a measure of bias for the climatological October O2 distribution resulting from each scenario (i), we con-
sider two contributions to the difference Di between RF estimates RFO2;i and SOSE O2, i.e., Di;1 and Di;2. Spe-
cifically, the difference between RF estimates and actual SOSE values:

Di;15h RFO2;ii2hO2i;

where h�i indicates an area-weighted average. In turn, Di;25
ffiffiffiffiffiffiffiffiffi
hSEi

p
, where

SE5 RFO2;i2h RFO2;ii
� �

2 O22hO2ið Þ
� �2

:

We also consider the ratio of Di;2 and the square root of the area-weighted variance of SOSE 12-month cli-
matology, i.e., rSOSE5

ffiffiffiffiffiffiffiffiffi
hr2i

p
55:52 lmol kg21. The average and range of Di;1; Di;2, and Di;2=rSOSE across 10

Monte Carlo simulations are compared with a similar estimate obtained with RF using the real distribution
of October profiles (scenario R1).

We note that
ffiffiffiffiffi
SE
p

is the same as D�RFg
described in section 3.2, except now it is for the October mean over

2008–2012 rather than the 5-year mean.

Table 1
Summary Table for Different O2 Estimates in This Analysis

O2 RF predictions on SOSE T/S output grid, after training
RF with mpi model profiles

O2 at T/S profile data locations are gridded using the
LSF method

mpi at obs locations mpi at test locations� O2 from RF predictions SOSE O2

Argo profiles Model profiles

RFg SOSETS O2

R1 in Table 3

RFg1 SOSETS O2
�Figure 2a, black/blue dots

RFg2 SOSETS O2
�Figure 2a, black/blue/red

RFgTS SOSETS O2
�Argo T/S locations

A1, A2 in Table 3

RFArgoTS O2
RFSOSETS O2 SOSELSF O2
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4. Results

We use RF regression separately on colocated Argo and SOSE profiles and estimate RFArgoTS O2 and
RFSOSETS O2, respectively. These estimates are expected to differ, since the observed profiles are saltier, and
characterized by lower O2 than SOSE (Figure 4). In the following, section 4.1 presents a summary of the
method performance from model profiles (section 4.1.1) and diagnostics from RF regression (section 4.1.2),
section 4.2 describes the Argo-based O2 estimate RFArgoTS O2, and section 4.3 shows experiments training
RF with data sets of different sizes and distributions (based on SOSE fields).

4.1. Random Forest Regression
4.1.1. RF Performance
Figure 5 shows a summary of how the method performs for model profiles, comparing both O2 predictions
at Argo floats locations (Figure 5a) and RFg SOSETS O2 (Figures 5b–5d) to actual SOSE fields. Predictions at
locations where O2 is available (i.e., locations of data used to train the RF) are close to the actual O2 values,
with a better performance for model profiles compared to (noisier) observations (black versus red line in
Figure 5a). Predictions at the locations of Argo T/S profiles show differences smaller than 4 lmol kg21

around 60% of the times. These results are the same for RF with six or eight predictors (dotted lines in Fig-
ure 5a). Yet percentages in Figure 5a may not be very informative, since the distribution of T/S locations is
not uniform in space (supporting information Figures S1g–S1i) and regions with larger/smaller estimate
bias may be accounted for differently.

Differences between RFg SOSETS O2 and SOSE O2 are, instead, helpful to assess the RF method performance.
D1 (as defined in section 3.3 but now for O2 5-year mean over all the months) is small (Figure 5c) and indi-
cates the estimated field is slightly biased low. The area-weighted cumulative distribution function for dif-
ferences between 5-year means of RFg SOSETS O2 and SOSE (i.e.,

ffiffiffiffiffi
SE
p

as defined in section 3.3 but now for O2

5-year mean over all the months) has heavier tails than a Gaussian distribution with standard deviation
equal to 5 lmol kg21 (Figure 5d). Yet in �65% of the domain, differences between the two products are
less than 1.5% of the actual value (Table 2), hence we trust the RF method here. D2 (as defined in section
3.3 but now for O2 5-year mean over all the months) is 6.79 lmol kg21 (D2=hri51:23) and may be domi-
nated by differences e.g., at eastern boundaries (i.e., small spatial scales associated with upwelling) and in
the southern part of the basin (Figure 2b). These large differences likely arise from lack of data (e.g., no O2

Argo observations east of Australia, and west of Africa, and South America), and sparse data south of �588S
for both O2 and T/S (Figure 2a, supporting information Figures S1d–S1i). Moreover, these are also regions
characterized by high variability (Figure 1d). Nevertheless, the bias is less than 3% of the actual SOSE field in
86% of the domain of interest (shaded in Figure 2a), Table 2.

Twelve-month anomalies (from the 5-year mean) show a larger D1 compared to the 5-year mean (Figure
5b). Yet area-weighted cumulative distribution functions for

ffiffiffiffiffi
SE
p

(of 12-month anomaly fields) are closer to

Figure 4. Histograms of differences in O2 (DO2, lmol kg21), potential temperature (DT, 8C), and salinity (DS, PSU) between
Argo profiles and SOSE. Color indicates the number of points in (a) DO2, DT and (b) DO2, DS bins.
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a Gaussian distribution with standard deviation of 3 (rather than 5) lmol kg21, with most of the domain
characterized by differences between 62.5 lmol kg21 (Figure 5d).
4.1.2. RF Diagnostics
Mean squared errors for the ensemble of random forest trees decline and stabilize at about 100 trees for
both RFs on Argo and SOSE profiles (Figure 6). Thus, B 5 500 used in this research is sufficient. RF explained

Figure 5. Summary of the comparison between RF O2 estimates and actual O2 fields. (a) Percentage of profiles included,
(sequentially) accounting for differences, from negative to positive, between: (red) RF O2 estimates based on Argo T/S
and actual Argo O2; (black) RF O2 estimates based on SOSE T/S (at locations where both Argo T/S and O2 are available)
and actual SOSE O2; (gray) RF O2 estimates based on SOSE T/S (at locations where Argo T/S are available) and actual SOSE
O2. Dotted lines are for RF O2 estimates based on 8 predictors. (b, c) Area-weighted spatial average O2 between 308S and
608S for (b) the 12-month anomaly (from the annual mean) and for (c) the annual mean, lmol kg21. Solid line and dots
for RFg SOSETS O2, dashed line and squares for SOSE. (d) Fraction of ocean area covered, (sequentially) accounting for differ-
ences, from negative to positive, between RFg SOSETS O2 and SOSE, once the area-weighted average has been removed
from each product (i.e.,

ffiffiffiffiffi
SE
p

). Thin solid lines are for 12-month anomalies (month in legend), the black thick line is for the
5-year mean. Gray dashed lines are for Gaussian distributions with standard deviations 1, 3, and 5 lmol kg21.
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96.9% of O2 variance in Argo profiles, and 98.5% in SOSE profiles. Figure 7 informs on the relative impor-
tance of the predictors used to estimate O2 in the RFs, whereas Figure 8 contains partial dependence plots
when values of one predictor change while other predictors remain fixed.

T/S emerge as the two most important predictors, both when starting from Argo observations and model
profiles (Figure 7), consistent with water mass dynamics in the SO (i.e., ventilation) and with T/S regulating
solubility of dissolved O2 in water (i.e., cold water can hold more O2). Antarctic Intermediate Water (AAIW) is
characterized by high-oxygen and low-salinity and begins to subduct north of the Antarctic Circumpolar
Current (ACC) Polar front (Giglio & Johnson, 2016, 2017; Orsi et al., 1995), resulting in a (circumpolar) low-
salinity region that aligns with peak O2 values at 150 m (Figures 1a–1c). O2 decreases as salinity increases
(Figure 8a). Despite O2 solubility decreases, O2 increases noticeably as temperature increases in the range
�2.5–5.18C (Figure 8b). In this temperature interval, less profiles are available (compared to other ranges;
see bars on the x axis of Figure 8b), yet �2.5–5.18C waters are in the low-salinity region (not shown) and the
observed behavior adequately reflects the AAIW ventilation.

Consistent with the described water mass properties, latitude is also a key predictor for O2 (Figure 7), with
the O2 meridional peak showing prominently in the partial dependence diagnostics (Figure 8c). The overall
importance of longitude is much lower (Figure 7), yet O2 zonal gradients are present across bathymetric

Table 2
Percentage of the Total Ocean Area of Interest (i.e., Shaded Area in Figure 2a) Where (Top) D% < c and (Bottom) D%RFg

< c and jD�j > jD�RFg
j, i.e., Where Differences D� Between d0 and d0c Are Significant

d dc

Percentage of area where D% < c

c51% c51:5% c52% c53%

RFg SOSETS SOSE 50 65 74 86
RFg1 SOSETS SOSE 46 62 72 83
RFg2 SOSETS SOSE 52 68 77 88
RFgTS SOSETS SOSE 80 89 94 98

Percentage of area where D%RFg
< c and D� > D�RFg

SOSE RFArgoTS 43 54 60 67
WOA13 RFArgoTS 44 55 62 69

Note. D�5d02d0c and D%5
jD�j

dc
, with d, dc, O2 estimates on a grid, and the prime symbol indicating the (area-

weighted) spatial average has been removed from the product. D%RFg
is D% when d is RFg SOSETS and dc is SOSE, and

similarly for D�RFg
. Results for RFs with eight predictors are comparable and not shown.

Figure 6. Mean squared error for different number of trees in the random forests.
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features that constrain ocean circulation. As an example, Figure 8d shows an increase of O2 in longitude in
correspondence of the Kerguelen Plateau (�708E). Sharp O2 changes are also observed in the 1408W–1058W
sector (Figure 8d), corresponding to the Eltanin Fracture Zone, Menard Fracture Zone, and East Pacific Rise.
Gradients are generally stronger for the observations, as model fields are smoother by construction (not only
in longitude). Year and month are similarly less important compared to other predictors (Figure 7), with the
partial dependence on month showing the annual cycle of O2 (Figure 8f), larger for Argo than SOSE profiles.
The partial dependence on year shows O2 decreasing from 2008 to 2012 (Figure 8e). Yet the sample size varies
largely across years (blue bars in Figure 8e) and observed interannual variability may be not significant.

Overall, four predictors (latitude, longitude, month, and year) had the same values across the Argo and
SOSE profiles, whereas the response variable (O2) and two most important predictors (T/S) had different val-
ues (Figure 4). RF estimates of O2 based on SOSE profiles are generally higher that those based on Argo
data (Figure 8). Differences in individual patterns observed in the partial dependence plots (Figure 8) may
imply differences in relationships (between O2 and other variables) existing in the Argo data and repre-
sented in SOSE. For example, such differences are observed for T/S relationships with O2 (Figures 8a and
8b). However, one needs to keep in mind that partial dependence of a variable is assessed while keeping
other variables fixed, which means that T (S) would be fixed at different levels for Argo and SOSE when
checking the partial dependence on S (T), consistent with differences in T/S diagrams between Argo and
SOSE (not shown). Thus, the comparison of patterns is not straightforward in this case.

Results for the RF with eight predictors (supporting information Figures S2–S3) are consistent with those
(above) for six predictors. Sea surface height aligns with circulation pathways and is a more important pre-
dictor than latitude when using Argo profiles, and as important for model profiles (supporting information
Figure S2, bottom). We find that chlorophyll is not a very important predictor.

4.2. Argo T/S-Based O2 Estimate from RF Regression
The general structure of 5-year mean RFArgoTS O2 (Figure 1c) is consistent with other products (Figures 1a, 1b,
and 9), with a (circumpolar) meridional peak in O2 along the ACC. As described in section 4.1, the southern
boundary of the peak O2 region aligns with the ACC Polar Front (see the location of S-PF in Chapman (2017),
Figure 10), where AAIW starts subducting. RFArgoTS O2 shows overall lower values than WOA13 and SOSE
(unmasked regions with red shades in Figures 2c, 2d, 9, and 10b), and is closer to WOA13 in the region east of
Argentina. Figures 9 and 10b show how RFSOSETS O2 is slightly biased, maybe due to limited sampling by avail-
able profiles (black dots in Figure 2a). Yet this slight RF method bias does not account for the difference
between RFArgoTS O2 and SOSE in Figures 2c, 9, and 10b, and our results suggest SOSE O2 is biased high com-
pared to observations. Also, gray squares in Figures 9 and 10 (i.e., SOSELSF O2) align well with SOSE, indicating
that the LSF gridding is not causing a bias. Exceptions to 5-year mean RFArgoTS O2 comparing more closely to
WOA13 than SOSE in the SO on a basin scale (Figure 9), are latitudes north of �408S in the Pacific and Atlantic

Figure 7. Permutation-based variable importance.
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sectors of the SO (maybe due to RFArgoTS positive bias near continental boundaries), and latitudes south of
�628S globally, and in the Indian and Pacific sectors (Figures 9b–9d). Figure 9b is consistent with a comparison
of SOSE and WOA13 with Argo profiles in Verdy and Mazloff (2017, their Figure 8a, for O2 at 200 m). A large
regional difference between Argo-based O2 and other products is reported east of Argentina, as RFArgoTS high
O2 is confined to the coast (Figures 1c, 2c, and 2d). Sharp differences also characterize (upwelling) regions
close to eastern boundaries, where the RF regression method (from model profiles) fails to estimate the ‘‘true’’
field (i.e., SOSE; as described in section 4.1.1), hence RFArgoTS O2 may too. A 5-year mean O2 reconstruction
from binning RF O2 estimated (from observations) at the locations of Argo T/S profiles is not as smooth as
RFArgoTS O2 in Figure 1c and is sparser, due to bins with no floats especially in the southern part of the basin.
Yet it is consistent with RFArgoTS O2 and is not showed here.

The area-weighted average RFArgoTS O2 anomaly (from the annual mean) shows a phasing of the annual
cycle that is consistent with other products, with largest O2 in September–October (Figure 10), when the
mixed layer depth is at 150 m or deeper along the ACC (Holte et al., 2017).

Figure 8. Partial dependence of O2 from (red) observed and (gray) model profiles. For continuous variables, inner ticks on
the x axes denote deciles of the observed and model data, respectively. For discrete variables (year and month), blue bars
report sample size on the right y axes.
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RFSOSETS O2 shows an amplitude that is about half that of SOSE (Figure 10a). If this difference is an indica-
tion of the method bias (when applied to the available profiles), the actual amplitude of the annual cycle in
the region may be larger than what RFArgoTS O2 suggests (hence larger than SOSE), and closer to WOA13.
Yet the spatial average in WOA13 may also be affected by poor spatial coverage and seasonal bias of the
database used in the mapping (supporting information Figures S1a–S1c). Finally, gray squares in Figure 10a

Figure 9. Annual mean O2 (as in Figures 1a–1c), lmol kg21. (a) Meridional average between 64.58S and 30.58S, with vertical gray lines indicating different basins.
(b–e) Zonal average (b) globally, (c) in the Indian Ocean (IO), (d) in the Pacific Ocean (PO), and (e) in the Atlantic Ocean (AO). Different lines for (Red) RFArgoTS O2,
(blue) WOA13, (solid black) RFSOSETS O2, (dashed black) SOSE, (gray squares) SOSELSF O2, i.e., applying the LSF mapping to actual SOSE O2 at the locations of Argo
T/S profiles. Red and black dotted lines are for (red) RFArgoTS O2 and (black) RFSOSETS O2 based on eight predictors.
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show that the LSF gridding is not causing a bias in the estimate of the annual cycle (i.e., the squares align
with the black dashed line from SOSE).

Results for the RF with 8 predictors are also shown in Figures 9 and 10 (dotted lines) and are similar to those
for the RF with 6 predictors. For the eight predictors case, D�RFg

shows some differences from Figure 2b (sup-
porting information Figure S4). Yet percentages of domain area in Table 2 are comparable (i.e., differences
are within few percent).

4.3. Results from Different Sampling Scenarios
As described in section 4.2, Figure 2b shows a large bias in regions close to continental boundaries. Yet add-
ing to the data set dedicated sections near continents (blue dots in Figure 2a, visited twice a year) results in
an estimate (RFg1 SOSETS O2) with larger bias than RFg SOSETS O2 (Table 2). This larger bias originates from
including a relatively large amount of data in (narrow) low O2 regimes which are not representative of the

Figure 10. Comparison across products for O2 large-scale averages in the SO (608S–308S, over the domain shaded in Fig-
ure 2a). Area-weighted average O2 (a) 12-month anomaly and (b) annual mean, lmol kg21. Different lines/markers for
(red, dots) RFArgoTS O2, (blue, dots) WOA13, (solid black, dots) RFSOSETS O2, (dashed black, squares) SOSE, (gray squares)
SOSELSF O2, i.e., applying the LSF mapping to actual SOSE O2 at the locations of Argo T/S profiles. Red and black dotted
lines in Figure 10a are for (red) RFArgoTS O2 and (black) RFSOSETS O2 based on eight predictors.

Table 3
Comparison of RFg SOSETS O2 With the Actual SOSE for the Month of October in 2008–2012: Difference in Area-Weighted Spa-
tial Average of O2 (D1, lmol kg21); Square Root of the Area-Weighted SE for Different Estimates After Removing the Area-
Weighted Spatial Average From Each Field (D2, lmol kg21); Ratio of D2 and rSOSE55:52 lmol kg21, and Percentage of the
Total Area With Relative Absolute Errors in 5-year Mean Estimates (After Removing the Spatial Average) Below 1%, 1.5%,
2%, and 3% (Area, %)

Scenario Parameter

Number of profiles in October

n 2n 4n

R1. Real distribution D1 0.66
D2 10.32
D2=rSOSE 1.87
Area 30, 43, 55, 72

A1. Additional profiles
randomly distributed

D1 20.28 (–0.91, 0.42) 20.20 (–0.51, 0.15)
D2 8.29 (8.10, 8.57) 7.21 (6.94, 7.56)
D2=rSOSE 1.50 (1.47, 1.55) 1.31 (1.26, 1.37)
Area 41, 58, 70, 82 48, 65, 76, 86

A2. Additional
profiles in sectors

D1 20.18 (–0.62, 0.24) 20.15 (–0.48, 0.16)
D2 8.20 (8.08, 8.65) 7.25 (6.95, 7.44)
D2=rSOSE 1.49 (1.46, 1.57) 1.31 (1.26, 1.35)
Area 41, 58, 69, 82 47, 64, 74, 85

Note. Range of values from 10 Monte Carlo simulations is in parentheses. Scenarios use only October data in input to
the RF, with n 5 545 profiles.
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large-scale O2 in the Southern Ocean. Adding to the sections more data in the Atlantic (red dots in Figure
2a, with same spatial and temporal sampling as in the Indian Ocean) improves the estimate (see
RFg2 SOSETS O2 in Table 2). If O2 were available at all of the Argo T/S locations in the SO during 2008–2012,
94% of the domain would be characterized by a bias less than 2% in the 5-year mean (see RFgTS SOSETS O2

in Table 2).

We now describe how the RF method performs in terms of D1 and D2 for different sampling scenarios of
model profiles, focusing on the month of October (see section 3.3). RF trained on October profiles available
in 2008–2012 (n 5 545 profiles, scenario R1) results in D150:66 lmol kg21 (Table 3). With a higher satura-
tion of the spatial field at sample sizes 2n and 4n, biases reduce (up to four times) under both scenarios A1
and A2. RF predictions for October tend to underestimate the mean O2, yet estimates from scenario A2 are
closer to the actual SOSE field.

The uncertainty (D2) in estimating the spatial structure of O2 (once the spatial mean has been removed) has
similar reduction from scenario R1 to scenarios A1 and A2 with 2n, and then with 4n. However, the reduc-
tions are about 20% for the n to 2n transition, and about 12% for the transition from 2n to 4n (Table 3). Sce-
nario A2 shows comparable or better performance than scenario A1, consistent with T/S being the main
predictors for O2 from the RF regression, and sampling in space and time being secondary to sampling
more T/S pairs overall.

5. Discussion and Conclusions

Modern statistical and supervised machine learning tools can be used to map O2 where T/S, and sufficient
O2 data are available. We estimate O2 at 150 m during 2008–2012, based on observed O2, T/S Argo profiles
and a RF regression method. The same RF-based estimate is also computed from model profiles (colocated
with observations) to evaluate errors in the method by comparison with the actual model solution (SOSE).
Method performance is poor in some of the boundary regions (e.g., regions of small spatial scales associ-
ated with upwelling and lack of data, Figure 2b) and, in general, where T/S profiles are sparse. Yet in �65%
of the domain, differences in the 2008–2012 mean between the estimated RFg SOSETS O2 and SOSE O2 are
less than 1.5% of the actual value, and RFArgoTS O2 can inform biases in SOSE and WOA13 in at least �55%
of the domain (Table 2).

Overall, RFArgoTS O2 suggests that SOSE and WOA13 may overestimate annual mean O2 at 150 m in the SO,
both on a global and basin scale (Figures 1a–1c, 2c, 2d, 9, and 10b). RFArgoTS O2 is closer to WOA13 than
SOSE, except for a few regions. For example, south of �628S, globally and in the Indian and Pacific sectors
of the SO (Figures 9b–9d), where O2 observations are sparse. A large regional difference in annual mean
between Argo-based O2 and other products is noticed east of Argentina, as RFArgoTS high O2 is confined to
the coast (Figures 1c, 2c, and 2d). Differences between RFArgoTS O2 and SOSE reflect differences in T/S (sup-
porting information Figure S5, e.g., 2008–2012 time mean in SOSE is colder and fresher and characterized
by high O2 east of Argentina compared to Argo). Also, when comparing Argo and WOA13, some of the dif-
ferences are related to WOA13 including data for a much longer period (and related differences in T/S, sup-
porting information Figure S6).

RFArgoTS O2 also suggests that SOSE may underestimate the annual cycle of O2 at 150 m (Figure 10a).
While O2 annual variability based on Argo T/S has similar amplitude to SOSE in the SO (north of 60.58S,
Figure 10a), the RF regression method may be biased low and the real signal may be stronger. The RF-
based estimate from model profiles is, indeed, characterized by half the variability in actual SOSE (Figure
10a). This emerges also in maps of the 12-month O2 anomaly from the 5-year mean (e.g., Figures 11a and
11b). RFg SOSETS O2 represents well the spatial distribution of SOSE anomaly in most regions (except e.g.,
some of the boundary regions as discussed previously), yet the amplitude is smaller. The number of pro-
files available varies across months (Figure 8f), yet is limited for all (and especially for October) and char-
acteristic localized regions with relatively larger annual variability may be undersampled (Figure 11a,
sparse black dots). Except for some localized regions, RFArgoTS O2 October anomaly is larger than in SOSE
(Figure 11c). In Figure 11c, locations south of 558S are masked out if less than five Argo T/S observations
are available in a 18 3 18 (latitude/longitude) bin centered at the grid point of interest, since O2 estimates
here may reflect T/S biases.
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Figure 11. O2 October anomaly from the 5-year mean, lmol kg21. (a) SOSE, (b) RFg SOSETS O2, and (c) RFArgoTS O2. Black
dots in Figure 11a indicate the location of Argo O2 profiles in October. In Figure 11c, locations south of 558S are masked
out if less than five Argo T/S observations are available in a 18 bin centered at the grid point of interest.
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Experiments with different sampling scenarios show reduction of bias and variance in RF (T/S-based) esti-
mates with growing sample size, unless a relatively large amount of data is included from small regions that
are not representative of the large-scale O2 distribution. The estimate does not necessarily improve when
the additional profiles are randomly distributed in the SO (Table 3). Although this result is counterintuitive,
it should be considered in the context of the RF variable importance analysis (Figure 7). The main predictors
for O2 from RF regression are T/S, hence sampling in more locations in space and time may provide redun-
dant information. Latitude, longitude, month, and year provide information regarding O2, however this rela-
tionship is not causal. The importance associated with them in the RF originates from atmospheric and
oceanic forcing, which is also manifest in T/S structure. However these coordinate predictors may contribute
to improving representation of phenomena (e.g., biological activity) that are not directly accounted for in T/
S, and this will likely be resolvable as the number of profiles increase. Larger importance of biological activ-
ity (compared to ventilation, hence T/S) will also be more apparent at shallower depths. Similarly, we find
that including sea surface height and surface chlorophyll from satellite data in the set of predictors does
not lead to a significant improvement of the 150 m O2 estimates, because information about those variables
is already partially represented by other predictors in the RF (i.e., T/S, longitude, latitude, month, and year).
The six-predictor RFs have the advantage of being computationally less expensive. The importance of Chl
may increase as the O2 data coverage (for the training dataset) extends to more regions, e.g., west of South
America.

While highly accurate (yet sparse in space and time) ship-based measurements are crucial for calibration of
profiling floats (for O2 as well as T/S), profiling floats have great potential to measure O2 and other biogeo-
chemical variables in the 3-D ocean, with no seasonal bias. An extensive spatial and temporal coverage of
O2 profiling floats remains the long-term goal for the scientific community in order to facilitate basin scale
studies from high quality O2 observations. The framework presented here has the potential to improve our
understanding of O2 annual mean fields and variability with the limited measurements available at present.
As the data set grows, the RF method will remain a valuable tool for multivariate mapping. In fact, even
with a large size of the O2 data set, using cross-covariances of O2 and T/S should provide a better estimate
of O2 fields, compared to mapping O2 observations alone. The framework here can also be used to simulate
sampling scenarios and guide enhancements to the current array of O2 profiling floats (e.g., SOCCOM floats;
Johnson et al., 2017). Finally, this method may prove useful for other biogeochemical variables (e.g.,
nutrients and carbon).
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